“
The great breakthrough that permitted man to count far beyond 10 with just ten different symbols was the invention of this turning point—a concept that mathematicians call positional notation. Positional notation means that each digit in a number has a particular value based on its position. In a decimal number, the first (farthest right) digit represents 1’s, the next digit 10’s, the next 100’s, and so on. The number 206 stands for six 1’s, no 10’s, and two 100’s: Add it all up: and you get 206. This number, incidentally, demonstrates why mathematicians consider the invention of a symbol that represents nothing (i.e., the number 0) to have been a revolutionary event in man’s intellectual history. Without zero, there would be no positional notation, because there would be no difference between 26 and 206 and 2,000,006. The Romans, for all their other achievements, never hit on the idea of zero and thus were stuck with a cumbersome system of M’s, C’s, X’s, and I’s which made higher math just about impossible. With
”
”
T.R. Reid (The Chip: How Two Americans Invented the Microchip and Launched a Revolution)