Maurice Wilkins Quotes

We've searched our database for all the quotes and captions related to Maurice Wilkins. Here they are! All 8 of them:

It is essential for genetic material to be able to make exact copies of itself; otherwise growth would produce disorder, life could not originate, and favourable forms would not be perpetuated by natural selection.
Maurice Wilkins
Science and religion have in common the aim of seeking and achieving unity. Most scientists today are being led increasingly away from the fundamental aim of science to achieve unity into rather limited ways of thinking without much open-mindedness, doing things merely to meet limited material needs.
Maurice Wilkins
DNA, you know, is Midas’ gold. Everyone who touches it goes mad
Maurice Wilkins
One of the most powerful tools for discovering structure is ‘X-ray diffraction’ or, because it is always applied to crystals of the substance of interest, ‘X-ray crystallography’. The technique has been a gushing fountain of Nobel prizes, starting with Wilhelm Röntgen’s discovery of X-rays (awarded in 1901, the first physics prize), then William and his son Laurence Bragg in 1915, Peter Debye in 1936, and continuing with Dorothy Hodgkin (1964), and culminating with Maurice Wilkins (but not Rosalind Franklin) in 1962, which provided the foundation of James Watson’s and Francis Crick’s formulation of the double-helix structure of DNA, with all its huge implications for understanding inheritance, tackling disease, and capturing criminals (a prize shared with Wilkins in 1962). If there is one technique that is responsible for blending biology into chemistry, then this is it. Another striking feature of this list is that the prize has been awarded in all three scientific categories: chemistry, physics, and physiology and medicine, such is the range of the technique and the illumination it has brought.
Peter Atkins (Chemistry: A Very Short Introduction (Very Short Introductions))
In 1950, a thirty-year-old scientist named Rosalind Franklin arrived at King’s College London to study the shape of DNA. She and a graduate student named Raymond Gosling created crystals of DNA, which they bombarded with X-rays. The beams bounced off the crystals and struck photographic film, creating telltale lines, spots, and curves. Other scientists had tried to take pictures of DNA, but no one had created pictures as good as Franklin had. Looking at the pictures, she suspected that DNA was a spiral-shaped molecule—a helix. But Franklin was relentlessly methodical, refusing to indulge in flights of fancy before the hard work of collecting data was done. She kept taking pictures. Two other scientists, Francis Crick and James Watson, did not want to wait. Up in Cambridge, they were toying with metal rods and clamps, searching for plausible arrangements of DNA. Based on hasty notes Watson had written during a talk by Franklin, he and Crick put together a new model. Franklin and her colleagues from King’s paid a visit to Cambridge to inspect it, and she bluntly told Crick and Watson they had gotten the chemistry all wrong. Franklin went on working on her X-ray photographs and growing increasingly unhappy with King’s. The assistant lab chief, Maurice Wilkins, was under the impression that Franklin was hired to work directly for him. She would have none of it, bruising Wilkins’s ego and leaving him to grumble to Crick about “our dark lady.” Eventually a truce was struck, with Wilkins and Franklin working separately on DNA. But Wilkins was still Franklin’s boss, which meant that he got copies of her photographs. In January 1953, he showed one particularly telling image to Watson. Now Watson could immediately see in those images how DNA was shaped. He and Crick also got hold of a summary of Franklin’s unpublished research she wrote up for the Medical Research Council, which guided them further to their solution. Neither bothered to consult Franklin about using her hard-earned pictures. The Cambridge and King’s teams then negotiated a plan to publish a set of papers in Nature on April 25, 1953. Crick and Watson unveiled their model in a paper that grabbed most of the attention. Franklin and Gosling published their X-ray data in another paper, which seemed to readers to be a “me-too” effort. Franklin died of cancer five years later, while Crick, Watson, and Wilkins went on to share the Nobel prize in 1962. In his 1968 book, The Double Helix, Watson would cruelly caricature Franklin as a belligerent, badly dressed woman who couldn’t appreciate what was in her pictures. That bitter fallout is a shame, because these scientists had together discovered something of exceptional beauty. They had found a molecular structure that could make heredity possible.
Carl Zimmer (She Has Her Mother's Laugh: What Heredity Is, Is Not, and May Become)
Although the nucleus might have been recognized by Antonie van Leeuwenhoek in the late 17th century, it was not until 1831 that it was reported as a specific structure in orchid epidermal cells by a Scottish botanist, Robert Brown (better known for recognizing ‘Brownian movement’ of pollen grains in water). In 1879, Walther Flemming observed that the nucleus broke down into small fragments at cell division, followed by re-formation of the fragments called chromosomes to make new nuclei in the daughter cells. It was not until 1902 that Walter Sutton and Theodor Boveri independently linked chromosomes directly to mammalian inheritance. Thomas Morgan’s work with fruit flies (Drosophila) at the start of the 20th century showed specific characters positioned along the length of the chromosomes, followed by the realization by Oswald Avery in 1944 that the genetic material was DNA. Some nine years later, James Watson and Francis Crick showed the structure of DNA to be a double helix, for which they shared the Nobel Prize in 1962 with Maurice Wilkins, whose laboratory had provided the evidence that led to the discovery. Rosalind Franklin, whose X-ray diffraction images of DNA from the Wilkins lab had been the key to DNA structure, died of cancer aged 37 in 1958, and Nobel Prizes are not awarded posthumously. Watson and Crick published the classic double helix model in 1953. The final piece in the jigsaw of DNA structure was produced by Watson with the realization that the pairing of the nucleotide bases, adenine with thymine and guanine with cytosine, not only provided the rungs holding the twisting ladder of DNA together, but also provided a code for accurate replication and a template for protein assembly. Crick continued to study and elucidate the base pairing required for coding proteins, and this led to the fundamental ‘dogma’ that ‘DNA makes RNA and RNA makes protein’. The discovery of DNA structure marked an enormous advance in biology, probably the most significant since Darwin’s publication of On the Origin of Species .
Terence Allen (The Cell: A Very Short Introduction)
RAY. But she never went to Leeds. Rosalind was thirty-seven when she died. It was a particularly cold April that year; there was frost on the trees in London; the Alps stayed snow-covered well into June. MAURICE. No, no, no ... I won't have it. RAY. Eulogies about her focused on her single-minded devotion to work, the progress she made in her work, the lasting contributions she made through her work. MAURICE. (To Ray.) Stop that! I said: stop that right now. RAY. I can't. It's what happened. DON. It's the tricky thing about time, and memory. I tell my grandchildren: whole worlds of things we wish had happened are as real in our heads as what actually did occur. MAURICE. Stop that right now. We start over. At the beginning.This instant. JAMES. You've got to be kidding me, Wilkins. I mean, you won. We won. Your name on the Nobel Prize. Remember that part? For god's sakes: this was the finest moment in your life. MAURICE. No. It wasn't. (He turns to Rosalind.) We start over. Just us this time. (Everyone else exits.) Please ... You see, I need ... ROSALIND. (Gently.) What is it you need, Maurice? MAURICE. There's something I need to tell you ... It's important. ROSALIND. Then tell me. (Beat.) MAURICE. I saw you. The day you went to see The Winters Tale at the Phoenix. ROSALIND. This is what you needed to tell me?
Anna Ziegler
And while each subsequent effort saw steep declines in cost, the price tags were still staggering. Craig Venter, the renegade entrepreneur who had taken on the public genome project in a race to be the first to sequence a human genome, sequenced his own genome at a cost of around $100 million. An anonymous Han Chinese man had been sequenced in 2008 for around $2 million. And James Watson, who shared the Nobel Prize for work with Francis Crick and Maurice Wilkins and who, together with Rosalind Franklin, elucidated the structure of DNA, had his genome sequenced by a group at Baylor College of Medicine in early 2008 for the comparatively modest sum of only $1 million.
Euan Angus Ashley (The Genome Odyssey: Medical Mysteries and the Incredible Quest to Solve Them)