“
What holds cells in this teetering position? In 2006, a group headed by Eric Lander at the Broad Institute in Boston, found at least part of the answer. A key set of genes in ES cells, the pluripotent cells we have come to know so well, were found to have a really strange histone modification pattern. These were genes that were very important for controlling if an ES cell stayed pluripotent, or differentiated. Histone H3K4 was methylated at these genes, which normally is associated with switching on gene expression. H3K27 was also methylated. This is normally associated with switching off gene expression. So, which modification would turn out to be stronger? Would the genes be switched on or off? The answer turned out to be both. Or neither, depending on which way we look at it. These genes were in a state called ‘poised’. Given the slightest encouragement – a change in culture conditions that pushed cells towards differentiation for example – one or other of these methylations was lost. The gene was fully switched on, or strongly repressed, depending on the epigenetic modification
”
”
Nessa Carey (The Epigenetics Revolution: How Modern Biology is Rewriting our Understanding of Genetics, Disease and Inheritance)