“
The factors that usually decide presidential elections—the economy, likability of the candidates, and so on—added up to a wash, and the outcome came down to a few key swing states. Mitt Romney’s campaign followed a conventional polling approach, grouping voters into broad categories and targeting each one or not. Neil Newhouse, Romney’s pollster, said that “if we can win independents in Ohio, we can win this race.” Romney won them by 7 percent but still lost the state and the election. In contrast, President Obama hired Rayid Ghani, a machine-learning expert, as chief scientist of his campaign, and Ghani proceeded to put together the greatest analytics operation in the history of politics. They consolidated all voter information into a single database; combined it with what they could get from social networking, marketing, and other sources; and set about predicting four things for each individual voter: how likely he or she was to support Obama, show up at the polls, respond to the campaign’s reminders to do so, and change his or her mind about the election based on a conversation about a specific issue. Based on these voter models, every night the campaign ran 66,000 simulations of the election and used the results to direct its army of volunteers: whom to call, which doors to knock on, what to say. In politics, as in business and war, there is nothing worse than seeing your opponent make moves that you don’t understand and don’t know what to do about until it’s too late. That’s what happened to the Romney campaign. They could see the other side buying ads in particular cable stations in particular towns but couldn’t tell why; their crystal ball was too fuzzy. In the end, Obama won every battleground state save North Carolina and by larger margins than even the most accurate pollsters had predicted. The most accurate pollsters, in turn, were the ones (like Nate Silver) who used the most sophisticated prediction techniques; they were less accurate than the Obama campaign because they had fewer resources. But they were a lot more accurate than the traditional pundits, whose predictions were based on their expertise. You might think the 2012 election was a fluke: most elections are not close enough for machine learning to be the deciding factor. But machine learning will cause more elections to be close in the future. In politics, as in everything, learning is an arms race. In the days of Karl Rove, a former direct marketer and data miner, the Republicans were ahead. By 2012, they’d fallen behind, but now they’re catching up again.
”
”
Pedro Domingos (The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World)