“
Quantum computing is not only faster than conventional computing, but its workload obeys a different scaling law—rendering Moore’s Law little more than a quaint memory. Formulated by Intel founder Gordon Moore, Moore’s Law observes that the number of transistors in a device’s integrated circuit doubles approximately every two years. Some early supercomputers ran on around 13,000 transistors; the Xbox One in your living room contains 5 billion. But Intel in recent years has reported that the pace of advancement has slowed, creating tremendous demand for alternative ways to provide faster and faster processing to fuel the growth of AI. The short-term results are innovative accelerators like graphics-processing unit (GPU) farms, tensor-processing unit (TPU) chips, and field-programmable gate arrays (FPGAs) in the cloud. But the dream is a quantum computer. Today we have an urgent need to solve problems that would tie up classical computers for centuries, but that could be solved by a quantum computer in a few minutes or hours. For example, the speed and accuracy with which quantum computing could break today’s highest levels of encryption is mind-boggling. It would take a classical computer 1 billion years to break today’s RSA-2048 encryption, but a quantum computer could crack it in about a hundred seconds, or less than two minutes. Fortunately, quantum computing will also revolutionize classical computing encryption, leading to ever more secure computing. To get there we need three scientific and engineering breakthroughs. The math breakthrough we’re working on is a topological qubit. The superconducting breakthrough we need is a fabrication process to yield thousands of topological qubits that are both highly reliable and stable. The computer science breakthrough we need is new computational methods for programming the quantum computer.
”
”