“
larynx (pp. 352–354), and (2) smaller intrinsic muscles that control tension in the glottal vocal folds or that open and close the glottis. These smaller muscles insert on the thyroid, arytenoid, and corniculate cartilages. The opening or closing of the glottis involves rotational movements of the arytenoid cartilages. When you swallow, both sets of muscles work together to prevent food or drink from entering the glottis. Food is crushed and chewed into a pasty mass, known as a bolus, before being swallowed. Muscles of the neck and pharynx then elevate the larynx, bending the epiglottis over the glottis, so that the bolus can glide across the epiglottis rather than falling into the larynx. While this movement is under way, the glottis is closed. Foods or liquids that touch the vestibular folds or glottis trigger the coughing reflex. In a cough, the glottis is kept closed while the chest and abdominal muscles contract, compressing the lungs. When the glottis is opened suddenly, a blast of air from the trachea ejects material that blocks the entrance to the glottis. Sound Production How do you produce sounds? Air passing through your open glottis vibrates its vocal folds and produces sound waves. The pitch of the sound depends on the diameter, length, and tension in your vocal folds. The diameter and length are directly related to the size of your larynx. You control the tension by contracting voluntary muscles that reposition the arytenoid cartilages relative to the thyroid cartilage. When the distance increases, your vocal folds tense and the pitch rises. When the distance decreases, your vocal folds relax and the pitch falls. Children have slender, short vocal folds, so their voices tend to be high pitched. At puberty, the larynx of males enlarges much more than that of females. The vocal cords of an adult male are thicker and longer, so they produce lower tones than those of an adult female. Sound production at the larynx is called phonation (fo.-NA .-shun; phone, voice). Phonation is one part of speech production. Clear speech also requires articulation, the modification of those sounds by voluntary movements of other structures, such as the tongue, teeth, and lips to form words. In a stringed instrument, such as a guitar, the quality of the sound produced does not depend solely on the nature of the vibrating string. Rather, the entire instrument becomes involved as the walls vibrate and the composite sound echoes within the hollow body. Similar amplification and resonance take place within your pharynx, oral cavity, nasal cavity, and paranasal sinuses. The combination gives you the particular and distinctive sound of your voice. That sound changes when you have a sinus infection and your nasal cavity and paranasal sinuses are filled with mucus rather than air.
”
”
Frederic H. Martini (Fundamentals of Anatomy & Physiology)