“
Then, decades later, in the 1970s, a hard-assed U.S. swim coach named James Counsilman rediscovered it. Counsilman was notorious for his “hurt, pain, and agony”–based training techniques, and hypoventilation fit right in. Competitive swimmers usually take two or three strokes before they flip their heads to the side and inhale. Counsilman trained his team to hold their breath for as many as nine strokes. He believed that, over time, the swimmers would utilize oxygen more efficiently and swim faster. In a sense, it was Buteyko’s Voluntary Elimination of Deep Breathing and Zátopek hypoventilation—underwater. Counsilman used it to train the U.S. Men’s Swimming team for the Montreal Olympics. They won 13 gold medals, 14 silver, and 7 bronze, and they set world records in 11 events. It was the greatest performance by a U.S. Olympic swim team in history. Hypoventilation training fell back into obscurity after several studies in the 1980s and 1990s argued that it had little to no impact on performance and endurance. Whatever these athletes were gaining, the researchers reported, must have been based on a strong placebo effect. In the early 2000s, Dr. Xavier Woorons, a French physiologist at Paris 13 University, found a flaw in these studies. The scientists critical of the technique had measured it all wrong. They’d been looking at athletes holding their breath with full lungs, and all that extra air in the lungs made it difficult for the athletes to enter into a deep state of hypoventilation. Woorons repeated the tests, but this time subjects practiced the half-full technique, which is how Buteyko trained his patients, and likely how Counsilman trained his swimmers. Breathing less offered huge benefits. If athletes kept at it for several weeks, their muscles adapted to tolerate more lactate accumulation, which allowed their bodies to pull more energy during states of heavy anaerobic stress, and, as a result, train harder and longer. Other reports showed hypoventilation training provided a boost in red blood cells, allowing athletes to carry more oxygen and produce more energy with each breath. Breathing way less delivered the benefits of high-altitude training at 6,500 feet, but it could be used at sea level, or anywhere. Over the years, this style of breath restriction has been given many names—hypoventilation, hypoxic training, Buteyko technique, and the pointlessly technical “normobaric hypoxia training.” The outcomes were the same: a profound boost in performance.* Not just for elite athletes, but for everyone. Just a few weeks of the training significantly increased endurance, reduced more “trunk fat,” improved cardiovascular function, and boosted muscle mass compared to normal-breathing exercise. This list goes on. The takeaway is that hypoventilation works. It helps train the body to do more with less. But that doesn’t mean it’s pleasant.
”
”