“
To appreciate the asymmetry between the possibility effect and the certainty effect, imagine first that you have a 1% chance to win $1 million. You will know the outcome tomorrow. Now, imagine that you are almost certain to win $1 million, but there is a 1% chance that you will not. Again, you will learn the outcome tomorrow. The anxiety of the second situation appears to be more salient than the hope in the first. The certainty effect is also more striking than the possibility effect if the outcome is a surgical disaster rather than a financial gain. Compare the intensity with which you focus on the faint sliver of hope in an operation that is almost certain to be fatal, compared to the fear of a 1% risk. The combination of the certainty effect and possibility effects at the two ends of the probability scale is inevitably accompanied by inadequate sensitivity to intermediate probabilities. You can see that the range of probabilities between 5% and 95% is associated with a much smaller range of decision weights (from 13.2 to 79.3), about two-thirds as much as rationally expected. Neuroscientists have confirmed these observations, finding regions of the brain that respond to changes in the probability of winning a prize. The brain’s response to variations of probabilities is strikingly similar to the decision weights estimated from choices. Probabilities that are extremely low or high (below 1% or above 99%) are a special case. It is difficult to assign a unique decision weight to very rare events, because they are sometimes ignored altogether, effectively assigned a decision weight of zero. On the other hand, when you do not ignore the very rare events, you will certainly overweight them. Most of us spend very little time worrying about nuclear meltdowns or fantasizing about large inheritances from unknown relatives. However, when an unlikely event becomes the focus of attention, we will assign it much more weight than its probability deserves. Furthermore, people are almost completely insensitive to variations of risk among small probabilities. A cancer risk of 0.001% is not easily distinguished from a risk of 0.00001%, although the former would translate to 3,000 cancers for the population of the United States, and the latter to 30.
”
”