“
About 4.6 billion years ago, a great swirl of gas and dust some 24 billion kilometres across accumulated in space where we are now and began to aggregate. Virtually all of it – 99.9 per cent of the mass of the solar system21 – went to make the Sun. Out of the floating material that was left over, two microscopic grains floated close enough together to be joined by electrostatic forces. This was the moment of conception for our planet. All over the inchoate solar system, the same was happening. Colliding dust grains formed larger and larger clumps. Eventually the clumps grew large enough to be called planetesimals. As these endlessly bumped and collided, they fractured or split or recombined in endless random permutations, but in every encounter there was a winner, and some of the winners grew big enough to dominate the orbit around which they travelled. It all happened remarkably quickly. To grow from a tiny cluster of grains to a baby planet some hundreds of kilometres across is thought to have taken only a few tens of thousands of years. In just 200 million years, possibly less22, the Earth was essentially formed, though still molten and subject to constant bombardment from all the debris that remained floating about. At this point, about 4.4 billion years ago, an object the size of Mars crashed into the Earth, blowing out enough material to form a companion sphere, the Moon. Within weeks, it is thought, the flung material had reassembled itself into a single clump, and within a year it had formed into the spherical rock that companions us yet. Most of the lunar material, it is thought, came from the Earth’s crust, not its core23, which is why the Moon has so little iron while we have a lot. The theory, incidentally, is almost always presented as a recent one, but in fact it was first proposed in the 1940s by Reginald Daly of Harvard24. The only recent thing about it is people paying any attention to it. When the Earth was only about a third of its eventual size, it was probably already beginning to form an atmosphere, mostly of carbon dioxide, nitrogen, methane and sulphur. Hardly the sort of stuff that we would associate with life, and yet from this noxious stew life formed. Carbon dioxide is a powerful greenhouse gas. This was a good thing, because the Sun was significantly dimmer back then. Had we not had the benefit of a greenhouse effect, the Earth might well have frozen over permanently25, and life might never have got a toehold. But somehow life did. For the next 500 million years the young Earth continued to be pelted relentlessly by comets, meteorites and other galactic debris, which brought water to fill the oceans and the components necessary for the successful formation of life. It was a singularly hostile environment, and yet somehow life got going. Some tiny bag of chemicals twitched and became animate. We were on our way. Four billion years later, people began to wonder how it had all happened. And it is there that our story next takes us.
”
”